Trace regularity for biharmonic evolution equations with Caputo derivatives
نویسندگان
چکیده
Abstract Our goal is to establish a hidden regularity result for solutions of time fractional Petrovsky systems. The order $$\alpha $$ α the Caputo derivative belongs interval (1, 2). We achieve such suitable class weak solutions.
منابع مشابه
Regularity of the Solutions for Nonlinear Biharmonic Equations in R
The purpose of this paper is to establish the regularity the weak solutions for the nonlinear biharmonic equation { ∆2u + a(x)u = g(x, u), u ∈ H2(RN ), where the condition u ∈ H2(RN ) plays the role of a boundary value condition, and as well expresses explicitly that the differential equation is to be satisfied in the weak sense.
متن کاملMaximal Lp-Regularity for Stochastic Evolution Equations
We prove maximal L-regularity for the stochastic evolution equation
متن کاملMaximal regularity for nonautonomous evolution equations
We derive sufficient conditions, perturbation theorems in particular, for nonautonomous evolution equations to possess the property of maximal Lp regularity. 1991 Mathematics Subject Classification. 35K90, 47D06.
متن کاملMaximal L-regularity for Stochastic Evolution Equations
We prove maximal Lp-regularity for the stochastic evolution equation{ dU(t) +AU(t) dt = F (t, U(t)) dt+B(t, U(t)) dWH(t), t ∈ [0, T ], U(0) = u0, under the assumption that A is a sectorial operator with a bounded H∞calculus of angle less than 1 2 π on a space Lq(O, μ). The driving process WH is a cylindrical Brownian motion in an abstract Hilbert space H. For p ∈ (2,∞) and q ∈ [2,∞) and initial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractional Calculus and Applied Analysis
سال: 2022
ISSN: ['1311-0454', '1314-2224']
DOI: https://doi.org/10.1007/s13540-022-00068-6