Trace regularity for biharmonic evolution equations with Caputo derivatives

نویسندگان

چکیده

Abstract Our goal is to establish a hidden regularity result for solutions of time fractional Petrovsky systems. The order $$\alpha $$ α the Caputo derivative belongs interval (1, 2). We achieve such suitable class weak solutions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity of the Solutions for Nonlinear Biharmonic Equations in R

The purpose of this paper is to establish the regularity the weak solutions for the nonlinear biharmonic equation { ∆2u + a(x)u = g(x, u), u ∈ H2(RN ), where the condition u ∈ H2(RN ) plays the role of a boundary value condition, and as well expresses explicitly that the differential equation is to be satisfied in the weak sense.

متن کامل

Maximal Lp-Regularity for Stochastic Evolution Equations

We prove maximal L-regularity for the stochastic evolution equation

متن کامل

Maximal regularity for nonautonomous evolution equations

We derive sufficient conditions, perturbation theorems in particular, for nonautonomous evolution equations to possess the property of maximal Lp regularity. 1991 Mathematics Subject Classification. 35K90, 47D06.

متن کامل

Maximal L-regularity for Stochastic Evolution Equations

We prove maximal Lp-regularity for the stochastic evolution equation{ dU(t) +AU(t) dt = F (t, U(t)) dt+B(t, U(t)) dWH(t), t ∈ [0, T ], U(0) = u0, under the assumption that A is a sectorial operator with a bounded H∞calculus of angle less than 1 2 π on a space Lq(O, μ). The driving process WH is a cylindrical Brownian motion in an abstract Hilbert space H. For p ∈ (2,∞) and q ∈ [2,∞) and initial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractional Calculus and Applied Analysis

سال: 2022

ISSN: ['1311-0454', '1314-2224']

DOI: https://doi.org/10.1007/s13540-022-00068-6